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Problem	  
The goal of this project was to develop a a lateral localization framework for autonomous 

driving in urban areas. Vehicle location is significant information for the controller, planner and 

behaviors systems. Lateral location is extremely important for safe and reliable self-driving, due 

to dense traffic, small lane width and varying road geometry. Though RTK GPS has centimeter- 

level accuracy output in open areas, it can have half-meter lateral error in urban areas, which is 

extremely dangerous for urban driving. It is therefore desirable to precisely identify the lateral 

position by combining with other sensors.	  

	  
	  
Approach/Methodology	  

The proposed framework is based on a particle filter and flexibly extends to the use of 

any number of sensors. In the implementation, low-cost sensors such as wheel speed encoders, 

steering wheel angle sensor and camera are used for correction. A dead-reckoning system is also 

designed for situations in which lane markings are absent. By combining the particle filter 

framework with the dead-reckoning system, our approach can continuously provide reliable 

localization information. We focus on lateral localization in urban scenarios, including driving 

on normal roads and making turns in intersections. Since RTK GPS is not always reliable in 

urban areas, we also use a verification method to compare the result with LIDAR landmarks, 

serving as ground-truth.	  

The particle filter-based lateral localization framework requires a lane-level map (RNDF) 

in advance and takes two kinds of inputs: movement and observation. In our implementation, we 

take wheel speed and steering wheel angle as movement inputs to predict particles’ locations;	  

and we take low-cost GPS and lane marking location as observation inputs to weight and re- 

sample particles. In particular, we first initialize hundreds of particles on the road (orthogonal to



the driving direction). Second, we treat vehicle lateral speed as a control parameter (movement 

model for the particle filter) to update the particle locations. Third, using GPS and lane marking 

information as observation, we generate the particle weights. Finally, we use the weights to 

resample the particles, and obtain the Maximum A Posteriori (MAP) location. We also establish 

criteria for the particles’ re-initialization to avoid particle deprivation. The update rate of our 

algorithm is about 20 Hz, which is high enough for urban driving, because of low speed limits 

(usually 10 to 35 mph).	  

A. Map Model Generation. Before running the localization framework on vehicles, a 

lane-level map (RNDF) needs to be prepared in advance. The RNDF can be established by using 

high-resolution aerial images or mounting a RTK GPS on vehicle and driving around. Both ways 

involve map errors: the high-resolution aerial image has at most 30cm error, and RTK has 1-5cm 

if fixed. An accurate RNDF needs to take advantage of both aerial images and RTK, since 

sometimes RTK may not be fixed, and may have 30cm or greater error if in float or a more 

degraded mode. The map error can also be included in the framework.	  

	  

	  
	  

Figure 1. RNDF map model. This 2D map model accurately records 
number of lanes, lane length, lane width, curvature, etc.



Fig. 1 is an RNDF example from one of our testing routes. In the RNDF, areas between 

intersections are road segments with multiple lanes which are well defined by waypoints on 

center lines; intersections are defined by specific zones; and entries and exits of lanes are linked 

by virtual lanes. From the RNDF, we know the number of lanes, lengths of lanes, lane direction 

and lane width at specific points. In Fig. 1, blue lines denote lane limits, brighter blue lines 

describe virtual lanes, and red lines show virtual lanes that have very high curvature.	  

B. Sensor Pre-processing. Some sensor data cannot be directly used by the particle	  
	  
filter framework, but require pre-processing. For example, the wheel speed and steering wheel 

angle cannot be directly used in the algorithm, though they can be used to roughly estimate 

heading information and lateral speed. [1] introduces a ground vehicle lateral motion model, and 

here we apply an approximation, which is shown in equations (1) and (2). Vehicle speed V can 

be easily generated from the wheel speed encoder. Heading angle α (yaw) and lateral speed v of 

the vehicle are strongly related to steering wheel angle and vehicle speed V. The steering wheel 

has angle φ, the steering ratio is γ, and the drifting ratio is ωd. The drifting ratio reflects sideslip 

of the vehicle while running at high speed. For urban application, ωd  can be considered a 

constant, and experimental results show that ωd = 1.1.	  

	  

	  
Though these estimates are not as accurate as those of high-performance IMU and the steering 

ratio may not be constant at high speed, experiments show they are accurate enough to serve as 

motion inputs for our algorithm in urban testing scenarios. Another indirectly used sensor output 

is  lane  marking  detection.  In  this  framework,  only  immediate  left/right  lane  markings  are



considered. Suppose lane markings on both sides are detected, and the distance from the vehicle 

is dl  (left) and dr  (right), respectively. The algorithm must obtain the bias from the lane center 

from the lane marking information, defining the lane center as zero position, where w denotes 

current lane width. If lane markings on both sides are visible,             and            . If only one 

side is invisible, then the distance to this side is 0, and the distance to the other side is greater 

than 0, (e.g. if only the left side lane marking is visible,            , dr = 0). The bias from the lane	  

center is:	  

                                       (3)
	  

	  
C. General Particle Filter. Since both the map and GPS are inaccurate, other information 

is required to achieve accurate lateral localization. To combine data from several sensors, we use 

a particle filter. As mentioned, this requires a movement model, observation model and prior 

distribution  to obtain  the posterior distribution  for parameters of interest.  Moreover, in  the 

particle filter implementation, prior and posterior distributions do not have to be in analytic form. 

The main benefit of using a particle filter is that there is no need to assume a prior distribution of 

lateral locations. Secondly, a small number of particles is enough to easily find the Maximum A 

Posteriori (MAP) location in real time. Thirdly, it can be extended by adding more sensors. 

Finally, particles can automatically take previous movement and location into account, since the 

particle distributions come from past iterations, and are affected by movement and observations 

in these iterations. This paragraph will describe the calculation of the movement model and 

observation model. Sampling is the most significant step in the particle filter algorithm, wherein 

all particles should be re-sampled according to their weights. The result from this step is a	  

simulated posterior distribution. First, as shown in Fig. 2, we evenly spread N particles pi across



each lane. Secondly, by using lateral speed, which is returned with its standard deviation by an 

onboard speed sensor, we update the particle locations. To simplify our implementation, we 

assume the lateral speed is a normally distributed random variable V whose mean and standard 

deviation are the speed sensor result. We define movement to the left as negative, and movement 

to the right as positive, assigning a speed v to each particle by randomly drawing a value from 

the normal distribution. The time ΔT between two instants is easily measured by the system. The 

translation of a single particle is therefore vΔT.	  

	  
	  

Fig. 2: Initialized particles pi (red points), GPS observation distribution (cyan blue) with mean value µ and lane 
marking location distribution on jth lane (red) with mean value µj. In this figure, the lane marking location 

distribution has been converted to the distribution of the vehicle position after detecting lane markings.	  
	  
	  
	  
Equation 3 gives the particle update:	  
	  
	  

                                                        (4)	  
	  
	  
where     denotes the position of the ith particle at moment t, after applying the movement model. 

Third, each particle updates its weight from observation for resampling in the next step. Here we 

have two observations: one is the GPS, and the other is the lane marking detection. Both the GPS 

and the lane marking location are considered random variables, and we assume these random 

variables are statistically independent. The conditional joint probability density, which equals the



weight, is calculated as the product of two separate conditional probability densities. The first 

conditional probability is from the GPS and the second one is from lane marking detection:	  

                                                    (5)	  
	  
where        denotes  the  observation  weight  for  particle  i  at  moment  t,  ogt  denotes  the  GPS 

observation at t and olt denotes the lane marking detection observation. It is known that the GPS 

signal has a normal distribution, and we use the mean value µ and standard deviation σ directly 

from the GPS module, and adjust these parameters online. The weight from the GPS can then be 

calculated by the following formula:	  

                                           (6)	  
	  

where pi is the location of ith particle. We only consider the left and right marking of our lane. If 

no lane marking was detected, set           = 1; if at least one side lane marking is detected, (3) is 

used to calculate µ in (7). Furthermore, if one side lane marking is detected, we set σ = 0.1 and if 

both side lane markings are detected, we set σ = 0.05. If there are multiple lanes, this distribution 

is applied to all lanes on the road and the maximum density from these distributions is obtained, 

since lane marking detection has no information about which lane the vehicle is traveling in. The	  

equation below shows how to calculate weights from the lane marking detection observations:	  
	  
	  
	  
	  

(7)	  
	  
	  
	  
	  
where     ,      are the bias and its standard deviation from the lane marking in the jth lane, as Fig.	  
	  
2 shows. For example, if the left lane marking is detected and is 1.2 m from the vehicle center, 

then the distribution of the vehicle position has a mean of 1.2 m from the left lane marking and a 

corresponding σ. Since lane marking detection does not report any information about the number



of lanes, we assume that the vehicle position will have this distribution in every lane on the road. 

In Fig. 3, three red curves denote weights on different particles from lane marking detection. In	  

addition, if no lane marking is detected,           = 1 and (5) yields:	  
	  
	  
	  

(8)	  
	  
	  
In that case, GPS will dominate the localization, and lateral localization relies on historical 

positions and GPS. The system can run in this dead reckoning mode if lane markings disappear, 

so our approach can still perform reliable lateral position estimation while changing lanes or 

making turns. We combine these two distributions (GPS and lane marking detection) for weight 

updating. Finally, we resample particles depending on their logarithmic weights. The MAP of the 

updated particles is the vehicle lateral location. In order to simplify and stabilize the result, we 

use a histogram to count the updated particles, then calculate the MAP (maximum a posteriori) 

location.	  

E. Dead reckoning. Since the GPS signal is not stable in urban areas, especially when 

driving through intersections, the GPS localization can oscillate dramatically. It is crucial to 

prevent this pose jump to obtain accurate pose estimation when driving through intersections, 

which involves a turn where no lane marking is observable. Here we apply the bicycle model to 

analyze the motion in intersections. If the current heading angle is θ, current location is X, 

longitudinal translation is dx, and lateral translation is dy, then the dead-reckoning result in	  

vehicle coordinates should be Xr = (dx, dy)T , and the result  ̂                                                                                                                                                                                                                                                                                                                                in global coordinates (North/East
	  

coordinates) should be:	  
	  



Let w denote the wheelbase, φ the steering wheel angle, R the turn radius, v the vehicle’s speed 

from ABS, dt the time interval, and Φ the turning angle. Actually, the rotation matrix is the 

transformation from the body (local) coordinates to the global coordinates [2]. Xr = (dx, dy)T can	  

then be calculated by Equation (9):	  
	  

                                (9)	  
	  
	  
	  
Findings	  

To verify the performance, we conducted field  tests on  the CMU-SRX autonomous 

driving vehicle platform [3]. The vehicle has a Mobileye system to detect lane markings, RTK 

GPS to collect ground-truth poses, and six 4-layer LIDAR sensors which provide 360-degree 

coverage to detect and register landmarks. The testing loops are surrounded by buildings or hills. 

RTK GPS normally has 0.4m to 0.6m lateral error on average on our test segments (according to 

messages from RTK GPS) in our urban testing area and the pose from RTK GPS jumps 

occasionally. The vehicle cannot autonomously run in this area relying solely on RTK GPS. For 

the initial test, we just use RTK GPS and try to combine other low-cost sensors’ outputs (steering 

wheel angle, wheel speed and lane locations) to correct the received RTK GPS result and achieve 

a smaller lateral error. To compare the result of our approach with ground truth, we combine 

LIDAR  and  RTK  GPS  to  generate  a  landmark  map.  The  results  are  organized  into  two 

categories: 1) Normal segments where a lane marking is visible on at least one side; 2) 

Intersections where the vehicle makes turns and no lane marking is visible.



A. Generating Ground Truth. Since RTK GPS is not always reliable in urban areas, it 

cannot be used as ground truth. We found that even though RTK GPS is not always reliable, it 

can have high performance (about 0.05m pose error) on some segments of the test route. Every 

time we test, these high-performance segments are different. Therefore, by executing a route 3 to	  

5 times, we can collect high-accuracy pose data on all segments of the test route. However, these 

offline data cannot be directly used as ground truth, since it is impossible to drive the exact the 

same trajectories in our tests that we used to generate ground truth. To utilize ground-truth poses, 

we therefore rely instead on the LIDAR system and landmarks. We pick and measure positions 

of permanent landmarks using the LIDAR system when RTK GPS is in high-accuracy mode 

(FIXED RTK), and save locations of these landmarks as a map. Examples of potential landmarks 

are light poles and fire hydrants. Small intersecting surfaces can limit the position error caused 

by the shape of landmarks.	  

B. Landmark Registration. GPS is used to initialize the system and find the k closest 

observable landmarks. Even though absolute locations of found landmarks are inaccurate due to 

the  urban  canyon  effect,  the  relative  position  between  the  vehicle  and  landmarks  can  be 

measured  by the  LIDAR system  accurately.  As  shown  in  Fig.  3,  S  is  part  of our  LIDAR 

coverage. We search in the neighbor area of the vehicle to find a nearest landmark P (red point) 

which is saved in our database, and then locate kNN (the k nearest-neighbor) LIDAR points 

(green points) around the found landmark within a given radius r. We use LIDAR to directly 

obtain relative pose d = O’P’ from the vehicle O’ to the average position of the selected points, 

and we assume that P’ and P are equal in the global (North/East) coordinate system. Since the 

saved landmarks are collected when GPS is accurate enough (approximately 0:05m error from 

the real  position), their  locations  are  also  reliable. Therefore  the  found  landmark  P  in  the



database can be used to calculate the vehicle ground-truth location by combining its current 

measured position (relative to the vehicle) d, i.e., distance and heading to the vehicle. If	  

; d = (x’, y’)T  , the heading angle between local y-axis and global N-axis is θ, then the	  
	  
corrected location of the vehicle (the red car) is O = (Ox;Oy)T:	  
	  
	  
	  

	  
	  
	  
We run a verification test, using FIXED RTK GPS to compare with our LIDAR landmark 

localization result. There is 0.06m error on average, which means that the LIDAR landmark 

localization method is accurate enough to serve as ground truth for comparing with the result of 

our approach.	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Fig. 3: Ground-truth landmark registration with LIDAR points and localization.



C. Test setup and results. For initialization, we evenly distribute particles across lanes. To 

achieve stable localization accuracy for different lane widths, we set constant distance between 

adjacent particles, instead of initializing a constant number of particles in an arbitrary lane. In 

our experiment, we set the distance to 5 cm. As suggested in [4], lane width in local areas varies 

from 2.7 to 3.6 meters. Therefore, there are 54 to 52 particles per lane. The algorithm updates at 

a rate of 40 Hz, on an Intel i3-level processor. Considering the typical speed limit in urban areas 

(30mph = 13m/s), the longitudinal update interval is only 32 cm. Fig. 4 shows our two test loops: 

the Oakland loop (Fig. 4a) and campus loop (Fig. 4b). Both of them are 2:1km in length, and we 

traverse them in a clockwise direction. These loops are in an urban area in Pittsburgh and 

surrounded by high buildings or hills, where GPS is not always accurate. Test loops include two 

different scenarios: normal segments and intersections. In normal segments, lane markings on at 

least one side can be reliably identified. In intersections, no lane marking is available in 

intersections, so dead-reckoning is activated.	  

	  

	  	  
	  
	  

Fig. 4: Test loops in urban area near Carnegie Mellon University. Si are normal segments, Ii are intersections.



	  
	  

In order to illustrate the performance of different modules in our system (particle filter 

localization and dead-reckoning), we organize the result by these two scenarios. Table I and 

Table II show test results of normal segments Si and intersections Ii, respectively. We only show 

results on the S1, S2 segments and I1, I2 intersections for the Oakland loop because landmarks are 

hard to recognize in other segments, so there is no validation data for those segments. egps, σgps, 

and maxgps  are respectively the mean error, standard deviation and max error with respect to 

ground truth of the RTK GPS alone. epf, σpf  and maxpf  are the same quantities for the particle 

filter.	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

1) Normal segments: In normal segments, lane markings are available on at least one 

side. These segments include straight and curved roads. These segments are used to test the 

performance of our lateral localization system when lane markings are available and GPS is less



accurate. Even RTK GPS is not able to obtain accurate pose information, and it usually was	  
	  

35cm to 51cm lateral error, as shown in the egps column of Table I. Normally, lane width is about	  
	  

2.8m in urban areas, and vehicle width is about 2.0m, so even if the vehicle can perfectly follow 

the lane center, there is only 0.4m from each side of vehicle to the lane markings. Since the GPS 

can have 0.3m to 0.5m error, there is a high chance of crossing the lane marking and entering 

another lane. Moreover, even though it is legal to drive the car very close to a lane marking when 

remaining in one lane, other drivers cannot correctly estimate intention of the vehicle. Table I 

and Fig. 5a show the performance of the particle filter localization part of our approach. The 

particle filter solution provides more accurate and stable pose estimation than RTK GPS. Mean 

error of the new approach (column 5) is 29-36cm less than that of GPS (column 2). The standard 

deviation (column 6) of the new approach is also less than RTK GPS’s (column 3), and the 

maximum error of the new approach (column 7) in each segment is less than that of RTK GPS 

(column 4), which means that the particle filter method is more stable and smooth.	  

	  

	  
	  

Fig. 5: Error results in normal segments and intersections for using RTK GPS and our method.



	  
	  

	  
Fig. 6: Test intersections in urban area.	  

	  
	  
	  

2) Intersections: Fig. 6 shows the geometry of our test intersections in detail. I1 and I2 are 

normal four way intersections, and I3, I4 and I5 are T-intersections (One arm of I5 is not drawn on 

our map, but it does not affect the result). The intersection scenarios test dead-reckoning 

performance. In normal segments, it is easy to observe lane markings and then calculate accurate 

lateral position by applying our particle filter approach. The system should also be able to report 

accurate pose when there is no lane marking available, and also when the car makes turns in 

intersections.  If  the system  can  achieve  accurate localization  in  both  normal  segments  and 

intersections, it can be applied to urban autonomous driving. Table II and Fig. 5b show the 

performance of the dead-reckoning part of our approach. It returns more accurate and stable 

results than the RTK GPS. The mean error of our method is less than half of RTK GPS’s error. 

The standard deviation of our approach is also smaller and the maximum error is about 15- 20cm 

less than that of GPS, which means that pose from the new approach is more stable than RTK 

GPS. In each row of the tables, standard deviations of our approach (σpf) are less than that of 

GPS  (σgps).  Since  the  LIDAR  landmark  localization  system  naively  uses  LIDAR  points  to 

register known landmarks and LIDAR sensors’ outputs are not stable, registered landmarks can 

keep jumping around their desired position. Also, a landmark object is not a point without area;



for example, cross-sections of poles are circles with radius of 5-10cm, and it is hard to determine 

the center of the landmark. Such errors result in unstable measurement. Therefore the standard 

deviation of our approach is close to the mean error. The maximum errors occur when there is 

incorrect landmark registration. For example, a walking pedestrian is detected by LIDAR and the 

points from the pedestrian may be accidentally registered to a nearby landmark. In this case, a 

wrong measurement is used to calculate the vehicle’s pose, resulting in large error. Since such a 

case rarely occurs, the mean error and standard deviation are much smaller than those maxima.	  

	  
	  
Conclusions/Recommendations	  

We have created a lateral localization system that consistently gives accurate and stable 

estimates of lateral location in a typical urban environment. This approach is robust and accurate 

not only for straight or single lanes, but also when lane markings are not visible and making 

turns in intersections by applying dead-reckoning system. Even when the vehicle only receives a 

poor GPS signal with large drifting and jumping, more accurate lateral location can be achieved 

by combining other sensors’ outputs, such as  wheel speed, steering wheel angles  and lane 

marking locations. In addition, we make specific adjustments to the general particle filter. The 

updating and weighting method make the particle filter work for this special application, and the 

re-initialization criteria and an anti-deprivation method make the algorithm more effective and 

reliable.	  

Future work should include:	  
	  
	  

x Developing an automatic landmark identification system which can generate the 

landmark map autonomously	  

x Developing a more sophisticated method for registration between LIDAR points 

and saved landmarks



x Move from a high-accuracy, high-cost GPS (which still has 

dropouts in urban canyons) to a low-cost GPS more relevant for 

production vehicles	  
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